Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 3007-3010, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262267

RESUMO

A high-energy, high-power ultrafast fiber laser system based on spatiotemporal coherent combination is presented. Bursts of eight subsequent chirped-pulse amplification (CPA)-stretched pulses are amplified simultaneously in 16 parallel ytterbium-doped rod-type amplifiers. After spatial and temporal coherent combination of the total 128 amplified pulse replicas into a single pulse, it is compressed in a partially protective-gas-filled CPA compressor. Finally, nearly Fourier-transform-limited pulses with an energy of 32 mJ and a duration of 158 fs are emitted with a repetition rate of 20 kHz and a close to diffraction-limited beam quality.

2.
Opt Lett ; 48(13): 3403-3406, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390141

RESUMO

We report on the efficient generation of broadband THz radiation based on a two-color gas-plasma scheme. Broadband THz pulses covering the whole THz spectral region, from 0.1-35 THz, are generated. This is enabled by a high-power, ultra-fast, thulium-doped, fiber chirped pulse amplification (Tm:FCPA) system and a subsequent nonlinear pulse compression stage that uses a gas-filled capillary. The driving source delivers 40 fs pulses at a central wavelength of 1.9 µm with 1.2 mJ pulse energy and 101 kHz repetition rate. Owing to the long driving wavelength and the use of a gas-jet in the THz generation focus, the highest reported conversion efficiency for high-power THz sources (>20 mW) of 0.32% has been achieved. The high efficiency and average power of 380 mW of the broadband THz radiation make this an ideal source for nonlinear, tabletop THz science.


Assuntos
Lasers , Radiação Terahertz , Frequência Cardíaca , Túlio , Veias
3.
Opt Express ; 31(2): 2744-2753, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785281

RESUMO

In this work, a continuously tunable extreme ultraviolet source delivering a state-of-the-art photon flux of >1011 ph/s/eV spanning from 50 eV to 70 eV is presented. The setup consists of a high-power fiber laser with a subsequent multipass cell followed by a waveguide-based high harmonic generation setup. Spectral tuning over the full line spacing is achieved by slightly adjusting the lasers driving pulse energy, utilizing nonlinear propagation effects and pulse chirping. The presented method enables a high tuning speed while delivering reproducible and reliable results due to a simple experimental realization. For possible future experiments, a method for continuous, on-demand pulse-to-pulse switching of the generated XUV radiation with full spectral coverage is conceived.

4.
Opt Lett ; 47(12): 3095-3098, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709059

RESUMO

High-energy, ultrafast, short-wavelength infrared laser sources with high average power are important tools for industrial and scientific applications. Through the coherent combination of four ultrafast thulium-doped rod-type fiber amplifiers, we demonstrate a Tm-doped chirped pulse amplification system with a compressed pulse energy of 1.65 mJ and 167 W of average output power at a repetition rate of 101 kHz. The system delivers 85 fs pulses with a peak power of 15 GW. Additionally, the system presents a high long- and short-term stability. To the best of our knowledge, this is the highest average output power short wavelength IR, mJ-class source to date. This result shows the potential of coherent beam combining techniques in the short wavelength infrared spectral region for the power scalability of these systems.

5.
Opt Express ; 29(17): 27900-27911, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615195

RESUMO

The impact of nonlinear refraction and residual absorption on the achievable peak- and average power in beam-splitter-based coherent beam combination is analyzed theoretically. While the peak power remains limited only by the aperture size, a fundamental average power limit is given by the thermo-optical and thermo-mechanical properties of the beam splitter material and its coatings. Based on our analysis, 100 kW average power can be obtained with state-of-the-art optics at maintained high beam quality (M2 ≤ 1.1) and at only 2% loss of combining efficiency. This result indicates that the power-scaling potential of today's beam-splitter-based coherent beam combination is far from being depleted. A potential scaling route to megawatt-level average power is discussed for optimized beam splitter geometry.

6.
Opt Lett ; 46(20): 5256-5259, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653166

RESUMO

We present a high-power source of broadband terahertz (THz) radiation covering the whole THz spectral region (0.1-30 THz). The two-color gas plasma generation process is driven by a state-of-the-art ytterbium fiber chirped pulse amplification system based on coherent combination of 16 rod-type amplifiers. Prior to the THz generation, the pulses are spectrally broadened in a multipass cell and compressed to 37 fs with a pulse energy of 1.3 mJ at a repetition rate of 500 kHz. A gas-jet scheme has been employed for the THz generation, increasing the efficiency of the process to 0.1%. The air-biased coherent detection scheme is implemented to characterize the full bandwidth of the generated radiation. A THz average power of 640 mW is generated, which is the highest THz average power achieved to date. This makes this source suitable for a variety of applications, e.g., spectroscopy of strongly absorbing samples or driving nonlinear effects for the studies of material properties.

7.
Opt Lett ; 46(11): 2678-2681, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061086

RESUMO

A multipass cell for nonlinear compression to few-cycle pulse duration is introduced composing dielectrically enhanced silver mirrors on silicon substrates. Spectral broadening with 388 W output average power and 776 µJ pulse energy is obtained at 82% cell transmission. A high output beam quality (${{\rm{M}}^2} \lt {1.2}$) and a high spatio-spectral homogeneity (97.5%), as well as the compressibility of the output pulses to 6.9 fs duration, are demonstrated. A finite element analysis reveals scalability of this cell to 2 kW average output power.

8.
Opt Express ; 29(5): 6957-6966, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726206

RESUMO

Differentially pumped capillaries, i.e., capillaries operated in a pressure gradient environment, are widely used for nonlinear pulse compression. In this work, we show that strong pressure gradients and high gas throughputs can cause spatiotemporal instabilities of the output beam profile. The instabilities occur with a sudden onset as the flow evolves from laminar to turbulent. Based on the experimental and numerical results, we derive guidelines to predict the onset of those instabilities and discuss possible applications in the context of nonlinear flow dynamics.

9.
Opt Lett ; 46(5): 969-972, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649633

RESUMO

An ultrafast fiber chirped-pulse amplification laser system based on a coherent combination of 16 ytterbium-doped rod-type amplifiers is presented. It generates 10 mJ pulse energy at 1 kW average power and 120 fs pulse duration. A partially helium-protected, two-staged chirped-pulse amplification grating compressor is implemented to maintain the close to diffraction-limited beam quality by avoiding nonlinear absorption in air.

10.
Opt Lett ; 45(22): 6250-6253, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186962

RESUMO

We demonstrate the reliable generation of 1-mJ, 31-fs pulses with an average power of 1 kW by post-compression of 200-fs pulses from a coherently combined Yb:fiber laser system in an argon-filled Herriott-type multi-pass cell with an overall compression efficiency of 96%. We also analyze the output beam, revealing essentially no spatiospectral couplings or beam quality loss.

11.
Appl Phys B ; 126(1): 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31831944

RESUMO

We present on THz generation in the two-color gas plasma scheme driven by a high-power, ultrafast fiber laser system. The applied scheme is a promising approach for scaling the THz average power but it has been limited so far by the driving lasers to repetition rates up to 1 kHz. Here, we demonstrate recent results of THz generation operating at a two orders of magnitude higher repetition rate. This results in a unprecedented THz average power of 50 mW. The development of compact, table-top THz sources with high repetition rate and high field strength is crucial for studying nonlinear responses of materials, particle acceleration or faster data acquisition in imaging and spectroscopy.

12.
Opt Lett ; 44(22): 5529-5532, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730100

RESUMO

The pulse-energy scaling technique electro-optically controlled divided-pulse amplification is implemented in a high-power ultrafast fiber laser system based on coherent beam combination. A fiber-integrated front end and a multipass-cell-based back end allow for a small footprint and a modular implementation. Bursts of eight pulses are amplified parallel in up to 12 ytterbium-doped large-pitch fiber amplifiers. Subsequent spatiotemporal coherent combination of the 96 total amplified pulse replicas to a single pulse results in a pulse energy of 23 mJ at an average power of 674 W, compressible to a pulse duration of 235 fs. To the best of our knowledge, this is the highest pulse energy ever accomplished with a fiber chirped-pulse amplification (CPA) system.

13.
Opt Lett ; 42(19): 3761-3764, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957121

RESUMO

We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra. A measured temporal contrast enhancement by at least seven orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...